
www.manaraa.com

Research Article
Free In-Plane Vibration Analysis of Circular, Annular, and
Sector Plates Using Isogeometric Approach

Xiaohui Qin,1 Guoyong Jin ,2 Mingfei Chen,2 and Shaoping Yin1

1CSIC-705th Research Institute, Xi’an 710077, China
2College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Correspondence should be addressed to Guoyong Jin; guoyongjin@hrbeu.edu.cn

Received 11 November 2017; Revised 22 February 2018; Accepted 29 March 2018; Published 7 May 2018

Academic Editor: Vadim V. Silberschmidt

Copyright © 2018 Xiaohui Qin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The in-plane free vibration of sector, annular, and circular plates is investigated by isogeometric finite element approach on the
basis of nonuniform rational B-spline (NURBS) basis functions. Under the current framework, both the displacement field and
geometry of the sector, annular, and circular plates are modeled by NURBS basis functions to bridge the gap between the design of
geometry and the analysis of variable field.TheNURBS basic functions can not only preserve the exact geometry of sector, annular,
and circular plates, but also provide higher continuity of basis function and its derivatives. The governing equations can be derived
by employing the principle of virtual work and the desired solutions are obtained by using the Arnoldi Method. Several numerical
examples of sector, annular, and circular plates are performed, and three refinement schemes (the h-, p-, and k-refinement strategies)
are applied to demonstrate the convergence. Then the effectiveness and accuracy of the proposed approach are validated through
comparisons with results obtained from the finite element analysis as well as open available literature. On this basis, some new
numerical results of frequency parameters with mode shapes are shown and may be used as benchmark results for the vibration
investigation in the future. In addition, the effects of sector angles and ratio of inside to outside radii on the in-plane vibration of
sector, annular, and circular plates under different boundary conditions are fully demonstrated.

1. Introduction

The sector, annular, and circular plates are typical structural
components used in engineering widely. The flexural vibra-
tion of sector, annular, and circular plates has been studied by
researchers and design engineers with considerable interest.
A number of investigations [1–5] have been devoted to
flexural vibrations of structures, maybe because the flexural
vibration has lower resonant frequencies and a decisive role in
terms of fluid-structure coupling. However, the vibrations of
structures also contain in-plane parts, which often appear in
high frequency motions and large coupled structures. When
the sound radiation and energy transmission of coupled
structures are considered, the importance of in-plane vibra-
tion is nonnegligible. Consequently, it is of great significance
to obtain deep in-plane vibration comprehensions of sector,
annular, and circular plates.

Xing and Liu [6] applied a Rayleigh quotient variational
principle to study the free in-plane vibration for rectangular

plate. In the paper, all classical boundary restraints which
included two various kinds of simple supports were taken
into consideration. Bercin and Langley [7] analyzed the in-
plane vibration problem of plate structures by adopting the
dynamic stiffness technique and classical finite element
assembled technique. Nefovska-Danilovic and Petronijevic
[8] also used this method to investigate the in-plane free
vibration of arbitrarily restrained isotropic rectangular plate.
Gorman [9] used the method of superposition to solve the
problem of free in-plane vibration of plates; then he used this
method to solve in-plane vibration of Levy-type plates [10]
which have a pair of simply supported opposite edges at least.
Andrianov et al. [11] adopted homotopy perturbationmethod
to study the in-plane vibration of rectangular plate. Chen et al.
[12] appliedChebyshev-Lagrangian approach to study in- and
out-of-plane vibration of plate with cutout. Mohazzab and
Dozio [13] used the spectral collocationmethod to analyze in-
plane vibration of isotropic skewed geometrical plates. Some
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other efforts [14–18] have also been devoted to the in-plane
vibration problem of plate structures.

It is needed to point out that a great majority of exist-
ing investigations in aforementioned issues are restricted
within rectangular plates. The related work about the in-
plane vibration of sector, annular, and circular plates is very
limited. Irie et al. [19] studied the natural in-plane vibration
frequencies for annular and circular plates with clamped
and free boundary conditions by using the transfer matrix
method. The Rayleigh-Ritz method was employed by Bash-
mal et al. [20] to investigate the natural in-plane vibration
characteristics for circular disk. Farag and Pan [21] assumed
that the in-plane vibration mode shapes in circumferential
and radial direction were, respectively, expressed in a series
summation of trigonometric functions and Bessel functions,
and then they solved the in-plane vibration equations for
the clamped circular plates. It is well known that differential
quadrature method (DQM) as one of point discretization
methods can solve this vibration. With this DQM, Eftekhari
[22] investigated in-plane vibration of circular arches. In this
investigation variable thickness and a moving point load are
taken into consideration. Singh and Muhammad [23] solved
free in-plane vibration of isotropic rectangular, rhombic, and
annular sector plates with the finite element analysis. In
their paper, the natural coordinates withmultiple points were
used to map the geometry. Chan [24] calculated in-plane
vibration frequency of circular plate structures by utilizing
Hamilton’s principle. Shi et al. [25] calculated the natural
in-plane vibration of annular sector plate with using the
modified Fourier seriesmethod.Thismethodwas used, lately,
by Wang et al. [26] to analyze the free in-plane vibration of
orthotropic sector, annular, and circular plates.

The finite element method (FEM) is one of main nu-
merical approaches to solve structural vibration. Under this
method, the basis functions in traditional FEM are employed
to describe the unknown structures’ fields. In engineering
occasions, however, some drawbacks of FEMmay be encoun-
tered when obtaining a discretized geometric model, such as
time-consuming refinement and cumbersome mesh gener-
ation, as well as with geometrical net errors. To overcome
the gap between FEM and Computer Aided Design (CAD),
recently Hughes et al. [27] introduced an isogeometric anal-
ysis (IGA) based on the NURBS basis functions [28]. In the
IGA method, the geometry and the variable fields of struc-
tures are constructed by using the NURBS basis functions.
These functions can preserve exact geometry and provide
higher order approximations than Lagrange functions used
in standard FEM.What is more, the refinement and meshing
process may be implemented without CAD geometry.

In recent decades, the IGA method has been also applied
to solve several mechanics problems, such as solid, fluid, con-
tact, and structural mechanics [29–33]. Cho and Ha [34]
investigated the exact geometry and enhanced sensitivity
of shape design optimization. Wall et al. [35] applied this
approach to solve structural shape optimization about two-
dimensional problems of linear elasticity. Based on patient-
specific vascular NURBS modeling, Zhang et al. [36] used
the isogeometric approach to analyze the flow of blood.
Bazilevs et al. [37] analyzed the fluid-structure interaction

problem about blood flow with the same theory. Kruse et
al. [38] analyzed large deformation elasticity by isogeometric
collocation methods; then they also solved frictional contact
problems. Recently, the IGA was extended to study static
and dynamic problems of various kinds of plate and shell
structures. Isogeometric Kirchhoff-Love shell formulations
were used by Kiendl et al. [39] to solve general hyperelastic
materials. This method then was used by Tepole et al. [40] to
analyze biological membranes. Benson et al. [41] used IGA
method to study Reissner-Mindlin shell. What is more, the
IGA method has been utilized in analyzing the vibration of
rotation-free shells [42] and functionally graded and mul-
tilayered plates with various theories, such as higher order
shear deformation [43–45], layerwise deformation [46], and
new inverse trigonometric shear deformation theories [47].
Although a large number of studies on the basis of IGA
method have been published, to the authors’ knowledge,
the works regarding the use of this method for the in-
plane vibration of sector, annular, and circular plates are still
unavailable in the literature.

In this work, an approximate formulation based on
NURBS functions is carried out for studying the in-plane
vibration characteristics of the sector, annular, and circular
plates, in which the CAD basis functions are utilized for
approximating field variables. The principle of virtual work
is used to derive the differential equations for free in-plane
vibration of sector plate, annular plate, circular sector plate,
and circular plate. The convergence study of the formulation
is testified in several selected examples. Several numerical
results of the natural in-plane frequency parameters for these
plates are given. By comparing numerical results with data
obtained by the FEM and existing literature, the convergence
and reliability of the formulation are tested in several selected
examples. In addition, the influence with regard to some
effects on the frequency parameters of these plates and
their associated mode shapes is also exerted, such as sector
angles, the ratios between inner and outer radii, and different
boundary conditions.

2. Theoretical Formulations

2.1. A Brief of NURBS Functions. A group of nondecreasing
values 𝜉𝑖 ∈ 𝑅, 𝑖 = 1, 2, 3 ⋅ ⋅ ⋅ 𝑚 + 𝑝 + 1, are used to define the
knot vector 𝐸 = {𝜉1, 𝜉2 ⋅ ⋅ ⋅ 𝜉𝑛+𝑝+1}. B-spline basis function is
piecewise constantwhen the order of basis functions𝑝 is zero.

𝑁𝑖,0 (𝜉) = {{{
1, 𝜉𝑖 ≤ 𝜉 ≤ 𝜉𝑖+1
0, 𝜉𝑖 ≥ 𝜉, 𝜉 ≥ 𝜉𝑖+1. (1)

For 𝑝 > 0, the basis functions can be calculated recursively as
𝑁𝑖,𝑝 (𝜉) = 𝜉 − 𝜉𝑖𝜉𝑖+𝑝 − 𝜉𝑖𝑁𝑖,𝑝−1 (𝜉)

+ 𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1𝑁𝑖+1,𝑝−1 (𝜉) ,

(2)

where the assumption 0/0 = 0 is adopted. 𝑚 and 𝑝, respec-
tively, are the total number and polynomial order of basic
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Figure 1: Quadratic basis functions for the knot vector 𝐸 ={0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

functions. If there are 𝑝 + 1 same boundary knots in a knot
vector, this vector belongs to the type of open knot vector.
For the continuity of the basis function, it is easily found that
the basis functions are 𝐶𝑝−𝑘 continuous at the knot having
multiplicity 𝑘 and 𝐶𝑝−1 continuous at nonrepeated knots. By
employing the knot vector 𝐸 = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5},
a series of quadratic B-spline basis functions can be easily
obtained in Figure 1. It is obvious that these basis functions
have 𝐶0 continuity at the location of ends of the knot vector
with repeated knot 𝜉 = 0.8 and 𝐶1 continuity at the other
nonrepeated knots.

However, it is insufficient to construct exactly arbitrary
geometries only by B-spline basis functions, such as ellipse
and circle. NURBS basis functions can overcome these limi-
tations by introducing the weights to construct a great variety
of geometrical entities. One-dimensional (1D) NURBS basis
function of 𝑝 order can be obtained:

𝑅𝑖,𝑝 (𝜉) = 𝜔𝑖𝑁𝑖,𝑝 (𝜉)∑𝑛𝑖=1 𝜔𝑖𝑁𝑖,𝑝 (𝜉) , (3)

where 𝜔𝑖 is the weight referred to the 𝑖th B-spline basis
function 𝑁𝑖,𝑝(𝜉).

Analogously, the 2D NURBS basis functions of orders 𝑝
and 𝑞 can be defined as

𝑅𝑝,𝑞𝑖,𝑗 (𝜉, 𝜂) = 𝜔𝑖,𝑗𝑁𝑖,𝑝 (𝜉)𝑀𝑗,𝑝 (𝜂)∑𝑚𝑖=1∑𝑛𝑗=1 𝜔𝑖,𝑗𝑁𝑖,𝑝 (𝜉)𝑀𝑗,𝑞 (𝜂) , (4)

where 𝑀𝑗,𝑝(𝜂) is the 𝑗th B-spline basis function in the 𝜂-
direction. 𝜔𝑖,𝑗 is the corresponding weight. 𝑚 and 𝑛 are the
numbers of total basic functions in the 𝜉- and 𝜂-direction,
respectively.

Therefore, by giving a set of control points𝑝𝑖,𝑗 = {𝑥𝑖,𝑗, 𝑦𝑖,𝑗}
and 2DNURBS basis functions 𝑅𝑝,𝑞𝑖,𝑗 (𝜉, 𝜂), a surface is written
as

𝑆 (𝜉, 𝜂) = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑅𝑝,𝑞𝑖,𝑗 (𝜉, 𝜂) 𝑝𝑖,𝑗. (5)

For example, the exact geometries of annular sector plate,
annular plate, circular sector plate, and circular plate with
their corresponding control nets are shown in Figure 2.

Then, by employing the NURBS basis functions, the
geometry coordinate (𝑥 and𝑦) and the in-plane displacement
fields (𝑢 and V) of structures can be described as follows:

𝑥 (𝜉, 𝜂) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑥𝑎,

𝑦 (𝜉, 𝜂) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑦𝑎
𝑢 (𝜉, 𝜂, 𝑡) = 𝑛×𝑚∑

𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑢𝑎,

V (𝜉, 𝜂, 𝑡) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) V𝑎,

(6)

where 𝑅𝑎(𝜉, 𝜂) = 𝑅𝑝,𝑞𝑖,𝑗 (𝜉, 𝜂) is the NURBS basis function, sub-
script 𝑎 = (𝑖−1)⋅𝑛+𝑗 is used for convenience,𝑥𝑎 and𝑦𝑎 are the
control point coordinates corresponding to relational basis
function, and (𝑢𝑎, V𝑎) represents the displacement vector of
the corresponding control points.

2.2. Description of the Models. The investigative geometry
models for free in-plane vibration of the sector, annular,
and circular plates in natural coordinates are presented in
Figure 3. In following analysis, the materials of these sector
plates are defined as isotropic with Poisson’s ratio ], mass
density 𝜌, and Young’s modulus 𝐸. The thickness, inner
radius, and outer radius of the annular plate sector are ℎ, 𝑅0,
and 𝑅1, respectively. All annular plate, circular sector plate,
and circular plate can be obtained from the annular sector
plate. It is required that the sector angle 𝜙 can be set to 2𝜋
for the case of annular plate. Similarly, for the circular sector
plate, it is required that the inner radius 𝑅0 can be set to
zero, while for the circular plate the sector angle 𝜙 and inner
radius𝑅0 should be, respectively, set to 2𝜋 and zero. However,
in the coupling edges 𝜙 = 0, 𝜙 = 2𝜋 and inner radius 𝑅0
= 0, the kinematic and physical compatibility conditions of
the above described annular plate, circular sector plate, and
circular plate should be taken into consideration. To satisfy
this characteristic, a scheme for coupling coincident control
points analogous to coupling nodes in the finite element
analysis is used to couple control points and nodes in the
model.

2.3. Constitutive and Kinematic Relations. The stress-strain
relations for the aforementioned isotropic sector, annular,
and circular plates undergoing in-plane vibration can be
obtained on the basis of generalized Hooke’s law, expressed
in the matrix form as

{{{{{{{

𝜎𝑥𝜎𝑦𝜏𝑥𝑦
}}}}}}}

= [[
[

𝑄11 𝑄12 𝑄16𝑄12 𝑄22 𝑄26𝑄16 𝑄26 𝑄66
]]
]

{{{{{{{

𝜀𝑥𝜀𝑦𝛾𝑥𝑦
}}}}}}}

, (7)
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Figure 2: The exact geometries and control nets for sector plates of various types.
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Figure 3: Isotropic annular sector plates of various types: (a) annular sector plate; (b) annular plate; (c) circular sector plate; (d) circular plate.

where 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦 and 𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦, respectively, are the stresses
and strains. The elastic stiffness coefficients 𝑄𝑖𝑗 (𝑖, 𝑗 = 1, 2, 6)
are given as follows:𝑄11 = 𝑄22 = 𝐸/(1−]2);𝑄12 = 𝐸]/(1−]2);𝑄16 = 𝑄26 = 0; and 𝑄66 = 𝐸/(2(1 + ])).

Referring to the work of Singh and Muhammad [23], the
in- and out-of-planemotions of these plates can be separated;
therefore, the motions of these sector plates are assumed
without out-of-plane part. Under this assumption the strain-
displacement relations are written:

𝜀𝑥 = 𝜕𝑢𝜕𝑥 ,
𝜀𝑦 = 𝜕V𝜕𝑦 ,

𝛾𝑥𝑦 = 𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥 .
(8)

In this paper, only the in-plane displacement components (𝑢
and V), rather than the out-of-plane one (𝑤), are involved
in the formulation. Therefore, the current formulation is
suitable for the plates composed of the symmetric materials
with respect to the mid-plane, such as single-layer isotropic,
transverse isotropic, and orthotropic plates, as well as sym-
metric multilayered composite plates.

2.4. Solution Procedure. The potential (𝑈) energy of sector
plate and the kinetic (𝑇) energy of sector plate are written as

𝑈 = 12 ∬
𝑆
(𝑄11𝜀𝑥2 + 2𝑄12𝜀𝑥𝜀𝑦 + 𝑄22𝜀𝑦2 + 𝑄66𝛾𝑥𝑦2) ℎ𝑑𝑥 𝑑𝑦 (9)

𝑇 = 12 ∬
𝑆
𝜌ℎ ((�̇�)2 + (V̇)2) 𝑑𝑥 𝑑𝑦, (10)

where 𝜌, ℎ, and 𝑆 are, respectively, themass density, thickness,
and integral surface of sector plate, �̇� = 𝜕𝑢/𝜕𝑡 and V̇ = 𝜕V/𝜕𝑡,

respectively, represent in-plane velocity field components
along the 𝑥, 𝑦 directions. The stress, strain components, and
elastic stiffness coefficients are determined by (7) and (8).

By applying Hamilton’s principle [48], the principle of
virtual work for sector plate is expressed as

𝛿∫𝑡2
𝑡1

(𝑈 + 𝑇) 𝑑𝑡 = 0. (11)

Substituting (9)-(10) into (11), the weak statement of in-
plane vibration can been obtained as follows:

∫𝑡2
𝑡1

∬
𝑆
{(𝑄11 𝜕𝑢𝜕𝑥 + 𝑄12 𝜕V𝜕𝑦) 𝛿(𝜕𝑢𝜕𝑥)

+ (𝑄12 𝜕𝑢𝜕𝑥 + 𝑄22 𝜕V𝜕𝑦) 𝛿(𝜕V𝜕𝑦) + 𝑄66 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)
⋅ 𝛿 (𝜕𝑢𝜕𝑦) + 𝑄66 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥) 𝛿( 𝜕V𝜕𝑥)
− 𝜌 ((�̇�) 𝛿 (�̇�) + (V̇) 𝛿 (V̇))} 𝑑𝑥 𝑑𝑦𝑑𝑡
= 0.

(12)

The in-plane vibration governing equations of sector plate
can be written by variable separation approach:

𝑄11 𝜕2𝑢𝜕𝑥2 + (𝑄12 + 𝑄66) 𝜕2V𝜕𝑥𝜕𝑦 + 𝑄66 𝜕2𝑢𝜕𝑦2 = 𝜌�̈�
𝑄22 𝜕2V𝜕𝑦2 + (𝑄12 + 𝑄66) 𝜕2𝑢𝜕𝑥𝜕𝑦 + 𝑄66 𝜕2V𝜕𝑥2 = 𝜌V̈.

(13)
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And the following definitions of stress resultants are used:

𝑁𝑥 = 𝑄11 𝜕𝑢𝜕𝑥 + 𝑄12 𝜕V𝜕𝑦 ,
𝑁𝑥𝑦 = 𝑄66 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)

at 𝑟 = 𝑅0, 𝑅1
𝑁𝑦 = 𝑄12 𝜕𝑢𝜕𝑥 + 𝑄22 𝜕V𝜕𝑦 ,

𝑁𝑦𝑥 = 𝑄66 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)
at 𝜙 = 0, 𝜙1,

(14)

where 𝑁𝑥 and 𝑁𝑥𝑦 are stress resultants in the 𝑥- and 𝑦-axis
directions in the radial edges, respectively. Similarly, 𝑁𝑦 and𝑁𝑦𝑥 are stress resultants in the 𝑦- and 𝑥-axis directions in
circumferential edges.

The boundary conditions are of the following form (see
[49]):

𝑁𝑥 or 𝑢
𝑁𝑥𝑦 or V
𝑁𝑦 or V

𝑁𝑦𝑥 or 𝑢.
(15)

According to the study of Cottrell [50], the IGA is analogous
to the traditional FEM for using the homogeneous Dirichlet
boundary conditions on 𝑢, V. The following boundary condi-
tions could be used in this paper:

Free (F):

𝑁𝑥 = 0,
𝑁𝑥𝑦 = 0

at 𝑟 = 𝑅0, 𝑅1
𝑁𝑦 = 0,

𝑁𝑦𝑥 = 0
at 𝜙 = 0, 𝜙1.

(16)

Clamped (C):

𝑢 = V = 0. (17)

As for the center of circular and circular sector plates and
the circumferential edges of annular and circular plates,
it is essential to consider their physical compatibility and
kinematic conditions.Therefore, similar to standard FEM for
coupling coincident nodes, IGA method can couple relevant
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Figure 4:Themappings among parent space, parametric space, and
physical space.

control points. From Figure 2, there are six control points
in coupling edges 𝜙 = 0 of annular plate and four control
points in the center of circular sector plate in original one.
After coupling relevant control points, there are three control
points and one point in coupling edges 𝜙 = 0 of annular plate
and the center of circular sector plate, respectively.

The NURBS functions substitute for interpolation func-
tions which are utilized in FEM to construct the unknown
fields. A typical element for two-dimensional structures is
used in the isogeometric analysis. There are present space for
calculating integral equation and physical space in conven-
tional finite element implementations, only. The parametric
space is unnecessary. Figure 4 shows the parent, parametric,
and physical spaces and mapping variations. The current
space is mapped to geometrical space by 𝑋𝑒 = 𝑆 ∘ 𝜙, where
mappings 𝜙 : Ω̃ → Ω̂ and 𝑆 : Ω̃ → Ω, respectively, are from
current space Ω̃ to parametric space Ω̃ and from parametric
space Ω̃ to geometrical space Ω.

An example is presented to explain the mapping 𝜙 : Ω̃ →Ω̂ for the Ω̂𝑒 = [𝜉𝑖, 𝜉𝑖+1] ⊗ [𝜂𝑗, 𝜂𝑗+1] parametric space of an
element

𝜙𝑒 {𝜉
𝜂} = {{{{{

12 (𝜉𝑖+1 − 𝜉𝑖) 𝜉 + 12 (𝜉𝑖+1 + 𝜉𝑖)12 (𝜂𝑗+1 − 𝜂𝑗) 𝜂 + 12 (𝜂𝑗+1 + 𝜂𝑗)
}}}}}

(18)

and the corresponding Jacobian determinant

𝐽 = 14 (𝜉𝑖+1 − 𝜉𝑖) (𝜂𝑗+1 − 𝜂𝑗) . (19)
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According to (6), it is easy to calculate the mapping 𝑆 :Ω̂ → Ω. And the Jacobian of the relevant transformation is
given:

𝐽 = [[[
[

𝜕𝑥𝜕𝜉 𝜕𝑥𝜕𝜂𝜕𝑦𝜕𝜉 𝜕𝑦𝜕𝜂
]]]
]

. (20)

By using the first derivatives of NURBS basis functions, the
Jacobian may be represented by the following expression:

𝐽 = [[[[
[

𝑛𝑒∑
𝑎

𝜕𝑅𝑎𝜕𝜉 𝑥𝑒𝑎
𝑛𝑒∑
𝑖

𝜕𝑅𝑎𝜕𝜂 𝑥𝑒𝑎
𝑛𝑒∑
𝑎

𝜕𝑅𝑎𝜕𝜉 𝑦𝑒𝑎
𝑛𝑒∑
𝑎

𝜕𝑅𝑎𝜕𝜂 𝑦𝑒𝑎
]]]]
]

, (21)

where 𝑛𝑒 is the number of total control points of each element.
Therefore, the Jacobian |𝐽| can be determined by (21).

Considering the above Jacobian determinant |𝐽| and |𝐽|,
the Jacobian determinant can be written as

|𝐽| = 𝐽 ⋅ 𝐽 . (22)

In order to facilitate the analysis, the transformation
formula which is used for interpretation of a quadrature rule
from geometrical space to current space is written as

∬
𝑆
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝑁el∑

𝑒

∬
Ω𝑒

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= 𝑁el∑
𝑒

∬̃
Ω𝑒

𝑓 (𝜉, 𝜂) |𝐽| 𝑑𝜉 𝑑𝜂,
(23)

where 𝑁el is the total number of elements. It is easy to see
that transformation formula can be obtained with Jacobian
determinant and the mappings in Figure 4.

By using the separation of variables 𝑢(𝑥, 𝑡) = �̃�(𝑥)𝑒𝑗𝜔𝑙𝑡
and V(𝑥, 𝑡) = Ṽ(𝑥)𝑒𝑗𝜔𝑙𝑡, the principle of virtual work for sector
plate in (10) can be written as

𝑈 = 12 ∬
𝑆
ℎ{𝑄11 (𝜕�̃�𝜕𝑥)2 + 2𝑄12 (𝜕Ṽ𝜕𝑦)(𝜕�̃�𝜕𝑥)

+ 𝑄22 (𝜕Ṽ𝜕𝑦)2 + 𝑄66 (𝜕�̃�𝜕𝑦 + 𝜕Ṽ𝜕𝑥)2}𝑑𝑥𝑑𝑦
𝑇 = −12 ∬

𝑆
𝜔𝑙2𝜌ℎ (�̃�2 + Ṽ2) 𝑑𝑥 𝑑𝑦,

(24)

where𝜔𝑙 is the 𝑙th free vibration frequency of the sector plate.

The Lagrange function of sector plate can be written as

𝐿 = 12 ∬
𝑆
ℎ{𝑄11 (𝜕�̃�𝜕𝑥)2 + 2𝑄12 (𝜕Ṽ𝜕𝑦)(𝜕�̃�𝜕𝑥)

+ 𝑄22 (𝜕Ṽ𝜕𝑦)2 + 𝑄66 (𝜕�̃�𝜕𝑦 + 𝜕Ṽ𝜕𝑥)2

− 𝜔𝑙2𝜌 (�̃�2 + Ṽ2)} 𝑑𝑥𝑑𝑦.
(25)

The variables and geometry coordinate of control points in
(6) can be written as

𝑥 (𝜉, 𝜂) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑥𝑎,

𝑦 (𝜉, 𝜂) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑦𝑎,

�̃� (𝜉, 𝜂) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) �̃�𝑎,

V (𝜉, 𝜂) = 𝑛×𝑚∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) Ṽ𝑎.

(26)

Similarly, the geometry coordinate and the in-plane
displacement fields of each element can be written as

𝑥𝑒 (𝜉, 𝜂) = 𝑛𝑒∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑥𝑒𝑎,

𝑦 (𝜉, 𝜂) = 𝑛𝑒∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑦𝑒𝑎,

�̃�𝑒 (𝜉, 𝜂) = 𝑛𝑒∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) 𝑢𝑒𝑎,

Ṽ𝑒 (𝜉, 𝜂) = 𝑛𝑒∑
𝑎=1

𝑅𝑎 (𝜉, 𝜂) Ṽ𝑒𝑎,

(27)

where 𝑛𝑒 is the number of total control points of each element;
the superscript 𝑒 denotes use for each element.

By substituting (26) into (25) and then applying Rayleigh-
Ritz procedure to solve every �̃�𝑎 and Ṽ𝑎,

𝛿𝐿 = 0. (28)

According to the element assembly operator in the stan-
dard FEMandquadrature rule in (23), (27) can be alsowritten
as

𝛿{12
𝑁el∑
𝑒=1

∬
Ω𝑒

[𝑄11 (𝜕�̃�𝑒𝜕𝑥 )2 + 2𝑄12 (𝜕Ṽ𝑒𝜕𝑦 )(𝜕�̃�𝑒𝜕𝑥 ) + 𝑄22 (𝜕Ṽ𝑒𝜕𝑦 )2 + 𝑄66 (𝜕�̃�𝑒𝜕𝑦 + 𝜕Ṽ𝑒𝜕𝑥 )2 − 𝜔𝑙2𝜌 ((�̃�𝑒)2 + (Ṽ𝑒))2]𝑑𝑥𝑑𝑦}
= 0.

(29)
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Ω1 = 3.1710

Ω1 = 2.7845

Ω1 = 2.6964
(a)

Ω2 = 4.2199

Ω2 = 3.1545
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(b)
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Figure 5: The first four mode shapes of CCCC annular sector plate (𝑅0/𝑅1 = 0.5) with different sector angles, that is, 𝜙 = 90∘, 180∘, and 300∘.

Therefore, the in-plane vibration governing expression can be
written as

[K − 𝜔𝑙2M] {�̃�𝑙} = 0, (30)

where M and K are, respectively, the global mass and
stiffness matrices for sector plate. 𝜔𝑙 denotes the 𝑙th natural
frequency of sector plate, and {�̃�𝑙} = {ũ, k̃} denotes the
corresponding eigenvector nodal displacements, in which
displacement component vectors ũ and ṽ are written as

ũ = {�̃�1, �̃�2, �̃�3 ⋅ ⋅ ⋅ �̃�𝑛⋅𝑚}T
k̃ = {Ṽ1, Ṽ2, Ṽ3 ⋅ ⋅ ⋅ Ṽ𝑛⋅𝑚}T . (31)

The eigenproblem in (30) can be solved by using Arnoldi
Method [51, 52], and the mode shapes can be expressed by
multiplying the NURBS basis functions with eigenvector.

To calculate the global stiffness matrix and mass matrix
in (30), each local element mass matrix and stiffness matrix
should be computed according to (29). Therefore, the local
element stiffness matrix can be written as

Ke = [K11 K12

K21 K22
] . (32)

The explicit forms of the local element stiffness matrixKe are
given by

𝐾11𝑖𝑗 = ∬
Ω𝑒

(𝑄11 𝜕𝑅𝑖𝜕𝑥
𝜕𝑅𝑗𝜕𝑥 + 𝑄66 𝜕𝑅𝑖𝜕𝑦

𝜕𝑅𝑗𝜕𝑦 )𝑑𝑥𝑑𝑦
𝐾12𝑖𝑗 = ∬

Ω𝑒
(𝑄12 𝜕𝑅𝑖𝜕𝑥

𝜕𝑅𝑗𝜕𝑦 + 𝑄66 𝜕𝑅𝑖𝜕𝑦
𝜕𝑅𝑗𝜕𝑥 )𝑑𝑥𝑑𝑦
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Ω1 = 2.5350

Ω1 = 2.5823

Ω1 = 2.5989
(a)

Ω2 = 2.9788

Ω2 = 2.6746

Ω2 = 2.6212
(b)

Ω3 = 3.9951

Ω3 = 3.0658

Ω3 = 2.7858
(c)

Ω4 = 4.3373

Ω4 = 3.5691

Ω4 = 3.0088
(d)

Figure 6: The first four mode shapes of CFCF annular sector plate (𝑅0/𝑅1 = 0.5) with different sector angles, that is, 𝜙 = 90∘, 180∘, and 300∘.

𝐾21𝑖𝑗 = ∬
Ω𝑒

(𝑄12 𝜕𝑅𝑖𝜕𝑦
𝜕𝑅𝑗𝜕𝑥 + 𝑄66 𝜕𝑅𝑖𝜕𝑥

𝜕𝑅𝑗𝜕𝑦 )𝑑𝑥𝑑𝑦
𝐾22𝑖𝑗 = ∬

Ω𝑒
(𝑄22 𝜕𝑅𝑖𝜕𝑦

𝜕𝑅𝑗𝜕𝑦 + 𝑄66 𝜕𝑅𝑖𝜕𝑥
𝜕𝑅𝑗𝜕𝑥 )𝑑𝑥𝑑𝑦.

(33)

Each local element mass matrix for sector plates can be
written as

Me = [M11 M12

M21 M22
] . (34)

The explicit forms of the local element mass matrix Me are
given by

𝑀11𝑖𝑗 = ∬
Ω𝑒

(𝜌𝑅𝑖𝑅𝑗) 𝑑𝑥 𝑑𝑦
𝑀12𝑖𝑗 = 𝑀21𝑖𝑗 = 0
𝑀22𝑖𝑗 = ∬

Ω𝑒
(𝜌𝑅𝑖𝑅𝑗) 𝑑𝑥 𝑑𝑦.

(35)

By using integral transform which is determined in (23), the
integral region of element can be transformed to numerical
integral region. Then numerical integration can be obtained
by applying the standard Gauss-Legendre quadrature.

The global stiffness and mass matrices of annular sector
plate can be obtained by using (29)–(35). For the stiffness and
mass matrices of the annular plate, circular sector plate, and
circular plate, a coupling coincident control points scheme
mentioned above is used. When the angle 𝜙 of the annular
sector plate is equal to 2𝜋 and with coupling the edges 𝜙 = 0,𝜙 = 2𝜋, the annular sector plate can be regarded as an annular
plate.When inner radius𝑅0 of the annular sector plate is zero
and with coupling the control points in the inner radius 𝑅0,
the annular sector plate can be regarded as a circular sector
plate. In a similar way, circular plate can be obtained when
the angle 𝜙 of the circular sector plate is equal to 2𝜋 and with
coupling the edges 𝜙 = 0, 𝜙 = 2𝜋.
2.5. Refinement Algorithms. The accuracy of FEM computa-
tional solutions is greatly related to the number of elements
and the order of functions used to describe unknown field
variables. To capture fast convergence in the solution field,
it is essential that the discretization of intricate geometries
can be successively refined. The basic B-spline refinement
mechanisms are different from the counterparts of the FEM.
One of the main advantages of a discretization tool based on
the B-spline basis functions is the ability to apply different
refinements algorithms in a simple manner. Three types
of refinement algorithms [53] are generally used in the
IGA.
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Figure 7: The first four mode shapes of FCFC annular sector plate (𝑅0/𝑅1 = 0.5) with different sector angles, that is, 𝜙 = 90∘, 180∘, and 300∘.

In the IGA, knot insertion is a strategy that inserts
additional knots into the knot vectors. In this subdivision
strategy, both the number and control points of element
are changed but the order of basis functions is maintained.
Degree elevation is a strategy that increases the order of
B-spline basis functions. In this strategy, both the order
and control points of basis B-spline functions are changed
yet knot span is not increased. The knot insertion and
degree elevation, respectively, are analogous to the h- and p-
refinement of the standard FEA. In addition, the combination
of knot insertion with degree elevation is the ability to
refine discretization. A strategy that first elevates the order of
NURBS basis functions and then inserted a unique knot into
a nonzero knot span is said to be k-refinement. As an efficient
and robust scheme, this strategy can increase the number of
elements and provide higher order of basis functions.

3. Numerical Results and Discussions

In this part, the convergence of the current method is first
tested. Then, several selected numerical examples of the in-
plane vibration analysis for sector, annular, and circular plates
are given to verify the validity and accuracy of this IGA
method. Free (F) and clamped (C) boundary conditions are

considered. For instance, CCCC and FFFF, respectively, rep-
resent all clamped and free sides, CCCFmeans the fourth side
is free and other three sides are fixed.The sequence of bound-
ary edges for the sector plates is defined in Figure 3. Then,
some free in-plane vibration mode shapes of sector plates are
plotted and relevant frequencies are presented. Finally, the
effects of some parameters study examples are also given. In
the following analysis, the isotropic annular, circular, and sec-
tor plates are considered as thin plates. The nondimensional
frequency parameter Ω = (2𝜔𝑅1/𝜋)√(𝜌/(𝐸(1 − ]2))) is used
if no special statement is given; thematerial parameters of the
different types of annular sector, annular, circular sector, and
circular plates are 𝐸 = 70Gpa, ] = 0.3, and 𝜌 = 2700 kg/m3.

3.1. Convergence and Validation. The annular sector plate as
an example is applied to test the convergence of the present
approach for free in-plane natural frequencies. For concise-
ness and convenience, three refinement schemes such as h-
, p-, and k-refinements which elevate the polynomial order
and insert knots with preserving the geometry and parame-
terization are employed.Then, the first eight nondimensional
frequency parameters of the CCCC annular sector plate by
using different orders and elements are shown in Table 1. The
plates are characterized by the following geometry constants:
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Table 1: Convergence of frequency parameters Ω = (2𝜔𝑅1/𝜋)√(𝜌/(𝐸(1 − ]2))) Ω of plates with CCCC boundaries and inner-to-outer radii
ratios: 𝑅0/𝑅1 = 0.5.
Order Element Mode number

1 2 3 4 5 6 7 8

𝑝 = 𝑞 = 2 8 × 8 4.4070 4.8359 5.5223 6.9141 7.0940 7.3009 8.0867 8.7015
16 × 16 4.4065 4.8353 5.5204 6.9101 7.0884 7.2908 8.0748 8.6908
32 × 32 4.4064 4.8352 5.5203 6.9098 7.0880 7.2902 8.0742 8.6901

𝑝 = 𝑞 = 3 8 × 8 4.4066 4.8355 5.5204 6.9101 7.0883 7.2908 8.0748 8.6908
16 × 16 4.4065 4.8353 5.5203 6.9099 7.0881 7.2903 8.0742 8.6902
32 × 32 4.4064 4.8352 5.5203 6.9098 7.0880 7.2902 8.0741 8.6901

𝑝 = 𝑞 = 4 8 × 8 4.4066 4.8355 5.5204 6.9099 7.0882 7.2905 8.0744 8.6903
16 × 16 4.4065 4.8354 5.5204 6.9100 7.0881 7.2903 8.0743 8.6903
32 × 32 4.4065 4.8353 5.5203 6.9099 7.0880 7.2902 8.0742 8.6902

𝑝 = 𝑞 = 5 8 × 8 4.4067 4.8356 5.5205 6.9099 7.0882 7.2905 8.0744 8.6903
16 × 16 4.4066 4.8354 5.5204 6.9100 7.0882 7.2904 8.0743 8.6903
32 × 32 4.4065 4.8353 5.5203 6.9099 7.0881 7.2903 8.0742 8.6902

Table 2: Comparison of frequency parameters Ω = 𝜔𝑅1√𝜌/𝐸 for annular sector plates with various boundaries and inner-to-outer radii
ratios: 𝑅0/𝑅1 = 0.5.
𝜙 (∘) Mode CCCC CFCF FFFF CCCF

Ref. [23] Ref. [25] Present Ref. [23] Ref. [25] Present Ref. [25] Present Ref. [25] Present

30

1 8.1592 8.1500 8.1527 3.4489 3.4788 3.4774 4.8589 4.8777 5.3157 5.3112
2 8.8379 8.8085 8.8122 6.2770 6.2179 6.2184 5.6760 5.6938 6.8500 6.8399
3 10.1089 10.2116 10.2138 6.4037 6.4445 6.4441 5.7026 5.7199 7.4560 7.5122
4 12.7648 12.7775 12.7822 8.3676 8.3194 8.3189 6.1162 6.1370 10.2296 10.2655
5 13.2623 13.3090 13.3143 8.3358 8.4499 8.4478 7.6716 7.6990 10.7897 10.8673
6 13.2555 13.3195 13.3225 9.4104 9.4264 9.4264 8.5692 8.6995 11.5209 11.5250

90

1 4.7576 4.7508 4.7516 3.7834 3.8017 3.7986 1.5633 1.5641 4.0055 4.0121
2 6.3458 6.3216 6.3233 4.4797 4.4676 4.4636 2.6785 2.6702 5.4346 5.3987
3 6.9512 6.8564 6.8582 6.0711 5.9866 5.9864 2.9795 2.9792 6.5046 6.4447
4 6.9793 6.8921 6.8937 6.5393 6.5032 6.4992 4.4513 4.4293 6.6321 6.5915
5 7.5749 7.5573 7.5588 6.5952 6.5497 6.5504 4.4627 4.4754 7.0237 6.9826
6 8.0831 8.0973 8.0983 6.7786 6.7742 6.7739 4.6668 4.6575 7.3563 7.3541

𝑅1 = 1m, 𝑅0/𝑅1 = 0.5, and 𝜙 = 𝜋/4. Obviously, the computed
results in Table 1 show a great convergence trend.

The comparisons of frequency parameters of these plates
including annular sector plate, annular plate, and circular
sector plate are shown in Tables 2–4. The first six dimen-
sionless natural frequencies Ω = 𝜔𝑅1√𝜌/𝐸 of annular sector
plates are presented Table 2. In this table, the inner-to-outer
radii ratios 𝑅0/𝑅1 = 0.5, the sector angles 𝜙 = 30∘, 90∘,
and different boundary conditions such as CCCC, CFCF,
FFFF, and CCCF are taken into account. Some results in
available literature reported by Singh and Muhammad [23]
using traditional FEM and Shi et al. [25] using Ritz method
are used in Table 2 to validate the accuracy of results of
annular sector plate with the present method. From Table 2,
a good agreement can be obtained by observing these results.
The discrepancies of the results can be negligible.

Besides, annular and circular sector plates under this
investigation are considered as special cases on the basis of the
model of annular sector plate. As mentioned above, they are
obtained by using a scheme for coupling coincident control
points.Therefore, the results of frequency parameters of these
plates should be investigated.The nondimensional frequency
parameters results of the annular plate are presented in
Table 3. The inner-to-outer radii ratios used for this table
are 0.2 and 0.4. Different boundary conditions FF, FC,
and CC are taken into consideration. Similarly, the natural
frequencies of annular plate are compared with the results
which are taken from Irie et al. [19] using transfer matrix
method and Bashmal et al. [20] using Rayleigh-Ritz method.
Table 4 presents the first nondimensional nine frequency
parameters of the circular sector plate. The sector angles𝜙 = 30∘, 90∘ and boundary conditions CCC, CFC, and FCF
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Table 3: Comparison of frequency parameters Ω = (2𝜔𝑅1/𝜋)√(𝜌/(𝐸(1 − ]2))) for annular plates with various boundary conditions.

𝑅0/𝑅1 Mode FF FC CC
Ref. [19] Ref. [20] Present Ref. [19] Ref. [20] Present Ref. [19] Ref. [20] Present

0.2

𝑛 = 1 1.156 1.155 1.156 1.472 1.473 1.472 1.947 1.963 1.947
2.688 2.687 2.680 2.311 2.313 2.310 2.840 2.870 2.840

𝑛 = 2 0.777 0.777 0.777 1.786 1.788 1.472 2.363 2.374 2.363
1.681 1.680 1.683 2.762 2.765 2.762 3.050 3.066 3.050

𝑛 = 3 1.449 1.450 1.449 2.580 2.584 2.580 2.845 2.857 2.844
2.379 2.379 2.380 3.399 3.364 3.399 3.571 3.582 3.570

𝑛 = 4 1.936 1.935 1.936 3.296 3.301 3.296 3.359 3.366 3.358
3.070 3.069 3.067 4.123 4.130 4.123 4.200 4.051 4.199

0.4

𝑛 = 1 1.177 1.177 1.177 1.761 1.764 1.761 2.399 2.418 2.399
2.829 2.829 2.828 2.454 2.458 2.454 3.712 3.743 3.713

𝑛 = 2 0.504 0.504 0.505 1.904 1.913 1.903 2.814 2.831 2.814
1.715 1.714 1.714 2.901 2.905 2.901 3.715 3.741 3.716

𝑛 = 3 1.132 1.133 1.132 2.248 2.252 2.249 3.293 3.314 3.293
2.341 2.340 2.272 3.497 3.501 3.496 3.931 3.953 3.931

𝑛 = 4 1.736 1.736 1.736 2.767 2.770 2.767 3.699 3.750 3.699
2.957 2.956 2.953 4.109 4.115 4.109 4.400 4.416 4.399

Table 4: Comparison of the first nine frequency parameters Ω = (2𝜔𝑅1/𝜋)√(𝜌/(𝐸(1 − ]2))) for circular sector plate with various boundary
conditions.

BC 𝜙 (∘) Method Mode sequence number
1 2 3 4 5 6 7 8 9

CCC

60 ANSYS 3.4710 3.5239 4.2842 5.3930 5.5591 5.8322 5.8813 5.9433 7.0236
Present 3.4716 3.5246 4.2847 5.3941 5.5601 5.8331 5.8821 5.9443 7.0243

90 ANSYS 2.7035 2.9895 3.4421 4.1459 4.5198 4.5668 4.9401 5.1551 5.4300
Present 2.7039 2.9900 3.4423 4.1466 4.5202 4.5676 4.9407 5.1560 5.4306

180 ANSYS 1.8735 2.3630 2.5835 2.8205 3.1101 3.1957 3.6007 3.7763 3.8302
Present 1.8737 2.3632 2.5836 2.8207 3.1103 3.1961 3.6010 3.7768 3.8305

270 ANSYS 1.6512 1.9271 2.2385 2.5417 2.6073 2.6320 2.9348 3.0282 3.2372
Present 1.6512 1.9274 2.2387 2.5419 2.6074 2.6324 2.9351 3.0285 3.2375

CFC

60 ANSYS 2.0725 2.3418 2.9577 3.9833 4.4296 4.4502 4.7109 4.9565 5.2712
Present 2.0727 2.3420 2.9579 3.9835 4.4303 4.4507 4.7113 4.9568 5.2713

90 ANSYS 1.5530 1.6721 2.1934 2.7998 3.2069 3.4231 3.8270 4.0418 4.0815
Present 1.5532 1.6723 2.1934 2.8000 3.2073 3.4234 3.8274 4.0421 4.0817

180 ANSYS 0.7003 1.1850 1.4080 1.6112 1.8608 1.9677 2.4200 2.4398 2.6848
Present 0.7003 1.1851 1.4081 1.6112 1.8609 1.9677 2.4201 2.4400 2.6849

270 ANSYS 0.3983 0.7898 1.0803 1.3769 1.4061 1.4591 1.7509 1.7527 2.0124
Present 0.3983 0.7898 1.0803 1.3770 1.4061 1.4592 1.7510 1.7527 2.0125

FCF

60 ANSYS 0.8416 1.5705 1.6204 2.6790 3.1841 3.5447 3.7060 3.8662 4.0591
Present 0.8417 1.5707 1.6204 2.6791 3.1844 3.5449 3.7061 3.8663 4.0594

90 ANSYS 1.0527 1.5126 1.7130 2.5865 2.8986 3.1485 3.1677 3.6040 4.0099
Present 1.0528 1.5127 1.7131 2.5867 2.8987 3.1486 3.1679 3.6041 4.0100

180 ANSYS 1.3000 1.3378 1.6175 2.0817 2.3425 2.4921 2.6675 3.1048 3.1080
Present 1.3001 1.3379 1.6176 2.0818 2.3427 2.4922 2.6676 3.1050 3.1081

270 ANSYS 1.2704 1.4099 1.4850 1.7801 2.1763 2.2147 2.2991 2.5909 2.7198
Present 1.2705 1.4099 1.4850 1.7799 2.1765 2.2146 2.2992 2.5910 2.7200
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Figure 8: The first seven mode shapes of CF annular plate with different inner-to-outer radii ratios, that is, 𝑅0/𝑅1 = 0.2, 0.5, and 0.8.

are taken into consideration. To validate these results of the
present method in Table 4, the natural frequency parameters
computed by ANSYS based on the FEM are utilized. In this
ANSYS computation, the type and the size of element are,
respectively, shell82 and 0.02, and mapped meshing grid is
adapted. Based on the above description of tables, it is obvious
that this IGA method has a great accuracy and efficiency to
evaluate the natural in-plane vibration frequencies for the
annular sector, annular, and circular sector plates.

Figures 5–7 depict first fourmode shapes and relevant fre-
quency parameters of the free in-plane vibration for annular
sector plate with different geometric parameters and bound-
ary conditions. From these figures, it can be easily seen that
in-plane vibration mode shapes are more complicated than

their flexural vibration modes even though they belong to
lower-order modes. For example, the deformation of exten-
sion and compression in one region can suddenly change
into a shear state in another region as mode varies. One of
the reasons is maybe that the in-plane vibration frequency is
determined by many factors rather than individual variable
of the plate. The deformation of the first mode extends and
compresses in the circumferential direction under CCCC
and CFCF boundary conditions but in the radial direction
under FCFC boundary condition. The variations of mode
shapes with sector angle also are obviously seen. Therefore,
the boundary conditions and the geometry parameters play
significant roles in their in-plane vibration mode shapes.
Figures 8–10 present some mode shapes, corresponding to
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(c)
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Ω4 = 1.6112

Ω4 = 1.2652
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Figure 9: The first seven mode shapes of CFC circular sector plate with different sector angles, that is, 𝜙 = 90∘, 180∘, and 300∘.

(a) Ω1 = 1.3692 (b) Ω2 =Ω3 = 1.5859 (c) Ω4 =Ω5 = 2.1321 (d) Ω6 =Ω7 = 2.2237

Figure 10: The first four mode shapes of C circular plate with different boundary conditions.

frequency parameters of annular, circular, and circular plates
with different geometric parameters, respectively.

3.2. The Effects of Parameters. In numerical studies, the
effects of several key parameters are investigated in Figures
11–13. The order 𝑝 = 𝑞 = 3 and the element 32 × 32 are used
to calculate the frequency parameters. The change trends
of the first three frequencies for annular sector plate and
circular sector plate are shown in Figure 11. In this analysis,

the inner-to-outer radii ratios 𝑅0/𝑅1 = 0.5 for annular sector
plate and 𝑅0/𝑅1 = 0 for circular sector plate are used, and
these sector annular angles gradually increase from 2∘ to
358∘. For sector annular plates with CCCC, FCFC, and CCCF
boundary conditions and circular sector plates with CCC,
CFC, and CCF boundary conditions, the conclusion can be
clearly obtained that the frequency parameters of the plate
are in the monotonically decreasing state when the sector
angle increases. The frequency parameters sharply decrease
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Figure 11: The variations of some frequency parameters for sector plates with different boundary conditions and sector angles: (a) annular
sector plate; (b) circular sector plate.

before the annular sector angle is small, that is, 𝜙 ≤ 10∘,
and the descending velocities of the frequency parameters
become slower when the sector angle varies from 10∘ to
100∘, and the frequency parameters remain stable after the
annular sector angle 𝜙 ≥ 100∘. For the cases of CFCF annular
sector plate and FCF circular sector plate, the frequency
parameters increase rapidly with beginning and then decease
or increase slightly with sector angle increasing in general.
The effects of inner-to-outer radii ratios on first three natural
frequencies of annular sector plate and annular plate are
illustrated in Figure 12. The sector angle 60∘ is considered
for annular sector plate. For the case of sector annular plate
under boundary conditions CCCC, CFCF, and CCCF and
annular plates under boundary conditions CC, CF, and FC,
the frequency parameters always increase and the ascending
velocities of frequency parameters gradually become faster as

the inner-to-outer radii ratios increase. For the FCFC sector
annular plate, the frequency parameters always decrease.
Figure 13 presents the variational rules of first three frequency
parameters for the annular sector plate by changing the
inner-to-outer radii ratios. The various sector angles and
boundary conditions are considered in this analysis. It is
obvious that the changes of natural frequencies for CCCC,
CFCF, and CCCF boundary conditions also increase as the
inner-to-outer radii ratios increase. But for FCFC boundary
condition the variations of frequency parameter are more
complicated; when the sector angle is larger than 10∘, the
first three frequency parameters decrease with the increasing
inner-to-outer radii ratios. When the sector angle is smaller
10∘, the variations of frequency parameters are different.
For instance, the first frequency parameter monotonically
decreases, the second frequency parameter first decreases and
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Figure 12: The variations of some frequency parameters for plates with different boundary conditions and inner-to-outer radii ratios: (a)
annular sector plate; (b) annular plate.

then increases, and there are almost few changes in the third
frequency parameters.

4. Conclusions

In this paper, the free in-plane vibration of annular sector,
annular, circular sector, and circular plates is investigated by
an effective approximate formulation based on isogeometric
finite element analysis. By using the NURBS basic functions
in this method, the polynomial order can be easily evaluated
and the desired geometry can be obtained. The gap between
CAD and FEA can be possibly narrowed by applying the
identical functions to construct the unknown filed and
the geometry. The in-plane vibration differential equations
for sector plate, annular plate, and circular plate can be
systematically derived by the principle of virtual work. Three

refinement schemes (the h-, p-, and k-refinement strategies)
are used to discretize the geometry and refine element, and
the efficiency and rapid convergence of the k-refinement in
IGA have been confirmed. Then several numerical results of
the natural nondimensional frequencies for sector, annular,
and circular plates are computed and compared with relevant
data in open references or from finite element method. It can
be easily obtained that the current formulation provides a
reliability means for the in-plane vibration of these plates.
Additionally, some new natural nondimensional frequency
parameters and corresponding mode shapes for annular
plate, circular plate, and sector plates are presented. The new
calculated results can be adopted by other researchers as a
benchmark for future researches. The effects of sector angle
and ratio of inside to outside radii for these plates with
different boundary conditions are investigated as well.
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Figure 13: The variation of first three frequency parameters for the annular sector plate with different boundary conditions, inner-to-outer
radii ratios, and sector angles.
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